Tuning the Properties of Transparent Oxide Conductors. Dopant Ion Size and Electronic Structure Effects on CdO-Based Transparent Conducting Oxides. Ga- and In-Doped CdO Thin Films Grown by MOCVD
نویسندگان
چکیده
A combined experimental and theoretical/band structure investigation is reported of Ga-doped CdO (CGO) and In-doped CdO (CIO) thin films grown on both amorphous glass and single-crystal MgO(100) substrates at 410 °C by metal–organic chemical vapor deposition (MOCVD). Film phase structure, microstructure, and electrical and optical properties are systematically investigated as a function of doping stoichiometry and growth conditions. XRD data reveal that all as-deposited CGO and CIO thin films are phase-pure and polycrystalline, with features assignable to a cubic CdO-type crystal structure. Epitaxial films grown on singlecrystal MgO(100) exhibit biaxial, highly textured microstructures. These as-deposited CGO and CIO thin films exhibit excellent optical transparency, with an average transmittance of >80% in the visible range. Ga and In doping widens the optical band gap from 2.85 to 3.08 and 3.18 eV, respectively, via a Burstein–Moss shift. On MgO(100), room temperature thin film conductivities of 11 500 and 20 000 S/cm are obtained at an optimum Ga and In doping levels of 1.6% and 2.6%, respectively. Together, the experimental and theoretical results reveal that dopant ionic radius and electronic configuration have a significant influence on the CdObased TCO structural, electronic, and optical properties: (1) lattice parameters contract as a function of dopant ionic radius in the order Y (1.09 Å) < In (0.94 Å) < Sc (0.89 Å), Ga (0.76 Å), with the smallest radius ion among the four dopants only shrinking the lattice marginally and exhibiting low doping efficiency; (2) carrier mobilities and doping efficiencies decrease in the order In > Y > Sc > Ga; (3) the Sc and Y dopant d states have substantial influence on the position and width of the s-based conduction band, which ultimately determines the intrinsic charge transport characteristics.
منابع مشابه
Dopant ion size and electronic structure effects on transparent conducting oxides. Sc-doped CdO thin films grown by MOCVD.
A series of Sc-doped CdO (CSO) thin films have been grown on both amorphous glass and single-crystal MgO(100) substrates at 400 degrees C by MOCVD. Both the experimental data and theoretical calculations indicate that Sc3+ doping shrinks the CdO lattice parameters due to its relatively small six-coordinate ionic radius, 0.89 angstroms, vs 1.09 angstroms for Cd2+. Conductivities as high as 18100...
متن کاملCdO as the archetypical transparent conducting oxide. Systematics of dopant ionic radius and electronic structure effects on charge transport and band structure.
A series of yttrium-doped CdO (CYO) thin films have been grown on both amorphous glass and single-crystal MgO(100) substrates at 410 degrees C by metal-organic chemical vapor deposition (MOCVD), and their phase structure, microstructure, electrical, and optical properties have been investigated. XRD data reveal that all as-deposited CYO thin films are phase-pure and polycrystalline, with featur...
متن کاملComputational study of electronic, spectroscopic, and chemical properties of (CdO)n (n=1-7) nanoclusters as a transparent conducting oxide
An ab initio study has been performed for the electronic, spectroscopic, and chemical properties of the most stable configuration of the (CdO)n nanoclusters by employing B3LYP-DFT/LanL2DZ method. Different isomers were optimized to obtain structural stability and numerous chemical parameters such as dipole moment, ionization potential, etc. We report here the vibrational frequencies of the most...
متن کاملProject Title : Ideal transparent conductors for full spectrum photovoltaics
The group has developed high quality Cadmium Oxide (CdO) based transparent conductors (TCO) thin films with excellent electrical and optical properties using radio frequency magnetron sputtering method. They demonstrated a significant improvement in the photon flux transmitted through CdO:In compared with commercial Fluorine doped Tin oxide (FTO) for PV technologies relying on the infrared part...
متن کاملAn Investigation of SILAR Grown CdO Thin Films
Cadmium oxide (CdO) thin films were deposited on the glass substrate by the modified SILAR method, using cadmium acetate dihydrate and ammonium hydroxide aqueous solution as precursors. The structural, surface morphological, elemental composition and optical properties of the deposited films were investigated via X-Ray Diffraction (XRD), scanning electron microscopy, EDAX,...
متن کامل